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Why networks?

I Everything is connected!
I Living systems — from the cell to entire populations —

comprise interaction networks
I Network structure ⇒ system behavior

I As a way to make sense of high dimensional data
I Modern molecular biology can measure 104–106 different

genes in every sample
I Finding key genes is a hunt for a needle in this haystack
I Genes don’t act alone
I It’s likely that there’s more than one way to affect a system

I Spectral graph theory is beautiful and useful :)
I How will a change in the network structure affect the

overall properties of the network?
I Can the network adapt/compensate for changes in one

area with changes in another?
I Can we infer something about the dynamics of the

network, even if all we have is its topology?
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Graphs

Consider a graph G = (V,E):

I V = set of vertices / nodes
I Vectors x : V → R; xi is the value at node i

I E = set of edges
I An edge is a pair of nodes (i, j)
I Edges may be weighted (“strength” of the connection

between i and j)
I Graph may be directed or undirected:

I directed: edge (i, j) goes from i to j, but not vice-versa
I undirected: edge (i, j) is equivalent to edge (j, i)
I (today we will only consider undirected graphs)
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Adjacency Matrix

G can be uniquely described by its adjacency matrix A:

I Aij = 1 if (i, j) ∈ E
I For weighted graphs, Aij = weight for the (i, j)-th edge

I If G is undirected, Aᵀ = A

I Example:

A =


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0





Lively
Networks

R. Braun

Motivation

Spectral
Graph Theory

Graph Defns

Laplacian

Intuition

Application

Spectral
Pathway
Analysis

Inferring
Dynamics

Conclusions

Open questions

Thanks!

A Matter of Degrees

Degree di of vertex i = number of edges connecting to it:

di =

|V |∑
j=1

Aij

I For weighted graphs, di is the sum of the edge weights
connecting to node i.

I (For directed graphs, can consider the in-degree or out
degree.)

D denotes a diagonal matrix such that Dii = di:

D =


1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2


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Other Graph Matrices . . .

In general, we can think a matrix M in several ways:

I As a “table” (e.g., describing the connectivity);

I As an operator, ie, a function that maps a vector x to the
vector Mx;

I As uniquely defining a quadratic form, ie, providing a
function that maps a vector x to a number xᵀMx

I want to talk about the graph Laplacian, L, by way of its
quadratic form . . .
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Laplacian Quadratic Form

The Laplacian quadratic form:

xᵀLx =
∑

(i,j)∈E

aij(xi − xj)2 ,

where

I aij is a (positive) edge weight for edge (i, j)
if the graph is weighted;

I aij = 1 for edges in unweighted graphs; and

I x is a vector across the vertices V .

Consider the simpler unweighted case,

xᵀLx =
∑

(i,j)∈E

(xi − xj)2 .
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Sum over edgesxᵀLx =
∑

(i,j)∈E

(xi − xj)2

can be thought of as the sum of per-edge Laplacians,

xᵀLx =
∑

(i,j)∈E

xᵀL(i,j)x ,

(or, for weighted graphs, the weighted sum
∑

(i,j)∈E

aijx
ᵀL(i,j)x ),

where
xᵀL(i,j)x = (xi − xj)2 .

It is easy to see that L(i,j) =

(
1 −1
−1 1

)
, i.e.:

xᵀL(i,j)x = (xi, xj)

(
1 −1
−1 1

)(
xi
xj

)
.

Thus, each “mini” Laplacian L(i,j) contributes 1 to the i-th
and j-th diagonal entries of L, and −1 to the entries
corresponding to edge (i, j).
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Properties of L

L = D −A

I For an undirected graph, L is symmetric.

I Diagonal entries are all positive.

I Off-diagonal entries are all non-positive.

I L is weakly diagonally dominant; row sums are 0.

I L is positive semidefinite.

“Laplacian”?

I Easy to show that Lx is the discrete form of the Laplace
operator on a function xi = f(vi) of the vertices vi.

(Write the sum of unmixed partial 2nd derivatives as finite
differences & set the spacing h = 1, i.e., one network
“hop” away from the vertex vi at which the Laplacian is
being evaluated.)

Interpretation?
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L interpretation

I Vectors x that minimize xᵀLx =
∑

E(xi − xj)2 are trying
to make the value at each node as similar to its neighbors
as possible.

I Minimizing
∑

(xi − xj)2 represents minimizing the energy
for many physical systems:

I If the edges represent resistors and xi measures the voltage
at node i, current will flow such that

∑
E(xi − xj)2 is

minimized.
I If the edges represent springs and xi the displacement of a

mass at node i, the nodes will move such that∑
E(xi − xj)2 is minimized.
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L Eigendecomposition

I Minimize xᵀLx subject to the constraint xᵀx = 1 . . .

I Solution: eigenvectors/eigenvalues,

vk = argmin
x⊥v0,...,vk−1

xᵀLx

xᵀx

λk = min
x⊥v0,...,vk−1

xᵀLx

xᵀx

with v0 = 1/
√
|V |, λ0 = 0.

I λ1 = algebraic connectivity; indicates how easily the graph
is partitioned (relaxation of min-cut), or, conversely, how
readily the network will synchronize.

I Physical intuition for λk and vk: frequencies and normal
modes.
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String

Consider a path graph; beads on a string:

L =



1 −1 0 0 0 . . .
−1 2 −1 0 0 . . .
0 −1 2 −1 0 . . .
0 0 −1 2 −1 . . .
0 0 0 −1 2 . . .
...

...
...

...
...

. . .


I Eigenvector vk gives displacements of the beads that

minimizes the nearest-neighbor distances, and is
orthogonal to v0 . . . vk−1.

I Eigenvalues λ0 = 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk give the
associated pitch.
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Another string

What if I reduce the weight of an edge?

L =



1 −1 0 0 0 . . .
−1 2 −1 0 0 . . .
0 −1 1.2 −0.2 0 . . .
0 0 −0.2 1.2 −1 . . .
0 0 0 −1 2 . . .
...

...
...

...
...

. . .


I Reducing the weight between the 5th & 6th vertex

“decouples” the left and right portions of the string.

I Can minimize other nearest-neighbor distances at the
expense of x5 − x6 to minimize

∑
aij(xi − xj)2.

I Odd modes (eigenvectors) with nodes 5 & 6 far apart are
not as unfavorable; should have lower λ’s.
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“Hearing the Shape” of a network

I The geometry of the network can tell us something about
dynamics of processes on the network (e.g. displacements,
flow of current).

I Changing the edge weights can result in changes to the
spectrum λ.

I Atay &al 2006: a network’s spectral properties, rather
than other network statistics, determines the dynamics.

I Isospectral graphs exist! Much like isospectral drums:

(Gordon, Webb, Wolpert 1992)
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“Hearing the Shape” of Cancer

Spectral methods to infer aberrant network regulation
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Pathway–level view

●●●●
●●

●●●● ●●
●●
●●

●●
●●

●● ●● ●●

●●

CYCSCASP3

CASP9

MAPKAPK3MAPKAPK2 ACTA1

HSPB1

FAS

FASLG

DAXX

BCL2 IL1A TNF

APAF1

Idea: overlay experimental data
onto a known interaction
network and use the graph’s
spectral properties to say
something about the behavior of
the system as a whole.

Nodes in a network; the head of a drum.
I The graph Laplacian uniquely describes the geometry of a

network (adjacency & degree of nodes, edge weights);
I Spectral decomposition of the graph Laplacian yields

eigenvalue-eigenvector pairs that summarize the connectivity
of the network and reveal its dynamical properties.
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Pathway–level view
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CYCSCASP3

CASP9

MAPKAPK3MAPKAPK2 ACTA1

HSPB1

FAS

FASLG

DAXX

BCL2 IL1A TNF

APAF1

Idea: overlay experimental data
onto a known interaction
network and use the graph’s
spectral properties to say
something about the behavior of
the system as a whole.

I Integrates both gene expression and gene co-expression
(correlation, MI, etc) data;

I Incorporates the pathway network topology (not all
edges/nodes are equally critical);

I Encapsulates the bulk variation in the data for genes on that
pathway;

I Robust to noise in gene expression measurements;
I Permits inferences about gene expression dynamics.
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Prioritizing interactions

Not all alterations are equally
important; want to identify
differences that significantly
impact network dynamics.
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a2,6 = 1, a2,4 = 0.2 ⇒ λ1 = 0.25:
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Spectral Pathway Analysis

We can use these properties to:

I Detect pathways (networks) that appear to be
differentially connected in cases vs. controls;

I Identify elements that contribute to network-wide gene
regulatory differences;

I Make inferences about the time evolution of the network
(under certain assumptions of gene regulation);

I Identify new regulators of network dynamics.

Several appealing features:

I No reliance on single-gene association statistics – consider
“bulk” pathway behavior;

I Natural way to prioritize critical interactions;

I Noise reduction/robustness via filtering high-eigenvalued
eigenvectors.
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Pathway-wide coexpression
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Comparing spectra:

Identify coexpression changes that
are likely to influence bulk pathway
characteristics.
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Starting with putative pathway topology:

1. Weight the edges based on class-conditional gene-gene
coexpression data;

2. Calculate eigenvalues and take differences between
phenotypes;

3. Permute phenotype labels to assess statistical significance
and flag pathways with significant spectral differences.
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Application

Radiation sensitivity study (public data, Reiger 2004, GEO
accession GSE1725):

I Four phenotypes:

– high radiation sensitivity cases (n=14)
– low radiation sensitivity controls (n=13)
– healthy controls (n=15)
– skin cancer patients (n=15);

I Three radiation exposures: UV, ionizing radiation, mock;

I RNA from 171 samples hybridized to Affy HGU95Av2
chips (12625 probes);

I Intensities normalized using RMA [Bolstad 2003];

I Pathways retrieved from the NCI-PID database (663
pathways, 1195 connected components).

Systematically search all connected components for significant
spectral differences in cases vs. controls.
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Results: HSP pathway

An illustrative example (13th most significant):
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high RS patients

High λ2 in the high radiation-sensitivity patients corresponds to
increased coupling across the pathway. . .
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HSP pathway

Controls:
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High radiation sensitivity cases:                       
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Example pathway: Stress Induction of HSP [BioCarta]

Inset right: spectrum of the pathway in cases vs. controls  
for first 9 eigenvalues. Errorbars indicate difference 
between case and control spectra under random label 
permutations, centered about true control values. 

Below: network colored by eigenvectors values for the first 
four mode in cases vs. controls. Intensity of color indicates 
magnitude; purple and orange are of opposite sign.
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Subtle differences
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Cross-study concordance

Exceptional cross-study concordance compared with other
methods:

study sizes (n1+n2)

PNS (Alg 1)

CePa GSA, out-degree

CePa GSA, in-degree

ROT/PE (cutoff-free)

ROntoTools/PathwayExpress

DEgraph

t.test(PC1)

GSEA

hypergeometric

gene

0 10 20 30 40
study pairs (sorted by gene-level concordance)

-1.0

-0.5

0.0

0.5

1.0
corl

concordance of pathway significance findings:
 rank correlations of p-values between study pairs
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From Network Structure to Network Function

Inferring differences in pathway dynamics from analysis of
“snapshot” data.
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From structure to function

Projection onto the network eigenvectors:

I Analogous to using PCA for dimension reduction, but
“topology–aware;”

I Assess which modes are being hit in the phenotype of
interest, without requiring that all samples do so in the
same way.

E.g., the same mode may be excited by down regulating
one subnetwork or upregulating another, admitting
molecular heterogeneity of complex diseases.

I In principle, these may be predictive of the pathway’s
dynamical response to the perturbation of a gene.
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Spectral differences ⇒ dynamical
differences

Projection onto the network eigenvectors:

I ER+ breast cancer study using MCF-7 cells:
WS8 estrogen-dependent growth (typical ER+: deprive

estrogen);
2A non-responsive to estrogen deprivation;
5C apoptoses in reponse to estrogen (after long-term estrogen

deprivation).

I Edge weights assigned from a static “snapshot” study of
cells under normal growth conditions;

I Pathway with significantly different spectra are flagged;

I Data from a separate time-course study following estrogen
exposure is projected onto the eigenspace of those
networks weighted by the WS8 data.



Lively
Networks

R. Braun

Motivation

Spectral
Graph Theory

Graph Defns

Laplacian

Intuition

Application

Spectral
Pathway
Analysis

Inferring
Dynamics

Conclusions

Open questions

Thanks!

Differential connectivity

Hormone ligand binding receptors: first 4 “modes”
Hormone ligand-binding receptors [nci]

λ1 = 0

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ2 = 0.44101

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ3 = 0.63073

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ4 = 0.8314

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ1 = 0.04747

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ2 = 0.39949

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ3 = 0.5

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ4 = 0.73578

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

← WS8/2A

← 5C

(Recall: WS8 requires estrogen; 2A does not; 5C dies.)
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Differential dynamics

Projection of gene expression onto pathway eigenvectors:
Hormone ligand-binding receptors [nci]

λ1 = 0

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ2 = 0.44101

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ3 = 0.63073

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ4 = 0.8314

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ1 = 0.04747

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ2 = 0.39949

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ3 = 0.5

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

Hormone ligand-binding receptors [nci]

λ4 = 0.73578

CGA

TSHB LHB FSHBCGB CGB5 CGB7 CGB8

TSHR LHCGR FSHR

← WS8/2A

←

time→

Significantly different projections over time. Notably, the WS8 cells
all tend toward the first (lowest eigenvalued) mode over time, while
2A cells do not sustain the response and 5C move away from it.
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Open questions
We assumed:

I undirected graphs;

I positive edge weights;

I no self links.

However, real biological networks:

I are directed (i may control j but not vice-versa);

I have both activating (+) and inhibiting (–) interactions;

I have autoregulating nodes (self loops).

Issues:

I If L � 0, how should we interpret the complex spectrum
or non-orthogonal eigenvectors?

I Is there a way to formulate the analysis to ensure L � 0?

I What is the minimal number of edge-weight changes
required to recover the spectral properties of a graph?
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